Skip to main content

12 coins

Problem:
There are 12 identical coins. There might be one that is a counterfeit, which is either heavier or lighter than the rest. Can you identify the counterfeit (if any) using a balance at most 3 times?

Solution:
I think this is one of the most difficult variations of the coins weighing problem.

The main idea is to "mark" the coins after weighing them.

Step 1. Divide the coins into groups of 4. Weigh the first two. If they have the same weight, go to step 4. Otherwise, mark the coins belonging to the heavier group 'H', lighter group 'L', and the unweighted ones 'S'. We know that the counterfeit is either in L or H.

Step 2.
Now we have 4 Hs, 4 Ls, and 4 Ss. We now form 3 groups: HHL, LLH, and HLS.

Step 3.
Weigh HHL against HLS.

Case 3.1: HHL is lighter than HLS.
Then either the L in HHL or the H in HLS is the counterfeit. Simply weigh one of them against S and conclude accordingly.

Case 3.2: HHL is heavier than HLS.
Then the counterfeit is one of the 2 Hs in HHL or the L in HLS. To find out which, weigh the 2 Hs against each other. If they are the same weight, L is the counterfeit. Otherwise, the heavier H is the counterfeit.

Case 3.3: HHL is the same weight as HLS.
Then counterfeit is in LLH. Weight an L against the other L. Conclude accordingly.

Step 4.
Here, the counterfeit must be within the 4 unweighted coins. Weigh 3 of them against any 3 coins from the ones weighted in step 1.

If they are the same weight, then the last unweighted coin is the counterfeit.

Otherwise, you now know if the counterfeit is heavier or lighter. Weigh once more and conclude accordingly.

QED

Comments

Popular posts from this blog

641 | 2^32 + 1

Problem: Show that \( 641 | 2^{32} + 1 \). Solution: (From Problem Solving Strategies, Arthur Engel) \( 641 = 625 + 16 = 5^4 + 2^4 \). So \( 641 | 2^{32} + 2^{28} \cdot 5^4 \). Also, \( 641 = 640 + 1 = 2^7 \cdot 5 + 1\). So \( 641 | (2^7 \cdot 5)^4 - 1 = 2^{28}\cdot 5^4 - 1 \). Hence \( 641 | 2^{32} + 2^{28} \cdot 5^4 -(2^{28}\cdot 5^4 - 1) \). QED

Derive e

Prove that \( \left( 1 + \frac{1}{n} \right)^n \) converges. Solution Let \( G(n) =  \left( 1 + \frac{1}{n} \right)^n \). Binomial expansion, \( G(n) = \sum_{k = 0}^{n} \frac{ \binom{n}{k} }{n^k} \). By simple inequality argument, \( \frac{ \binom{n}{k} }{n^k} < \frac{1}{k!} \). So if we let \( F(n) = \sum_{k = 0}^{n} \frac{1}{k!} \), we have \( G(n) < F(n) \). By simple inequality argument, \( F(n) < 1 + \sum_{k = 1}^{n} \frac{1}{2^{k-1}} < 3 \). So G and F are bounded above. By AM-GM, \( \frac{G(n-1)}{G(n)} = \left( \frac{ n^2 }{ n^2 - 1} \right)^{(n-1)} \frac{ n}{n+1} < \left(  \frac{ \frac{ n^2 }{ n^2 - 1} (n-1) + \frac{ n}{n+1} }{n} \right)^n = 1 \). So \( G(n-1) < G(n) \). Since G is monotonic increasing and bounded above, G converges. Similarly F converges. Let's also prove that G and F converges to the same limit. By studying individual terms in \( F(n) - G(n) \) and making simple inequality arguments, we can show that for each \( \epsilon > 0 \) w...

Random walk by the cliff

You are one step away from falling down a cliff. In each step, you have 1/3 chance of moving towards the cliff, 2/3 chance of moving away from the cliff. What is the probability you fall down the cliff? Solution It is 1/2, and there are 3 ways to approach this. Let's say we are at position 0, and the cliff is at position -1. We go +1 with probability p, and go -1 with probability 1-p. Approach 1. Catalan number: All paths that end with falling down the cliff can be broken down to two parts: 0 -> ... -> 0 and 0 -> -1. The path 0 -> ... -> 0 is Catalan; if we fix the path length to 2n, then the number of paths would be C_n. What we want to compute is the total probability = (1-p) sum { C_n (p(1-p))^n }. We can use the generating function for Catalan to arrive at: if p <= 1/2, probability = 1; if p > 1/2, probability = 1/p - 1. Approach 2. Let P(i) be the probability of reaching -1 from position i.  P(0) = 1-p + pP(1) Also, P(1) can be derived as follows: can we r...