Skip to main content

n-th non-square

Problem:
Find the n-th non-square number.

(Adapted from Problem Solving Strategies, Arthur Engel)


If you have CS background, I invite you to come up with an O(log N) solution.

Done? Good. Below I present the O(1) approach.

Solution:
The n-th non-square number is given by \( F(n) = \left \lfloor n + \sqrt{n} + 1/2  \right \rfloor \).

Proof:
Let G(n) be the same as F(n) except for the floor function.

Investigate \( m \neq F(n) \). There is the largest \( n \) s.t. \( F(n) < m \). Hence \( m+1 \leq F(n+1) \).
We conclude that \(G(n) < m \) and \(m+1 \leq G(n+1) \).

Rearranging the terms and squaring the inequalities, we get:
\( n < (m-n-1/2)^2 \) and \( (m-n-1/2)^2 < n+1 \), or
\( n - 1/4 < (m-n)^2 - (m-n) < n + 3/4 \).
Since the middle term is an integer, we see that \( (m-n)^2 - (m-n) = n \). Simplifying, we get \(m = (m-n)^2\), showing that m is a square.

In other words, F(n) skips all squares.

Now, we will show that F(n) is the n-th non-square number. The proof is by counting.
Fix k. We note that \(F(k^2) = k^2 + k\). Hence There are \(k^2\) terms of F(n) \( \leq k^2 + k \).
On the other hand, we know that there are k squares \( \leq k^2 + k \). Hence F(n) iterates through all the non-square numbers \( \leq k^2 + k \). Therefore we conclude that F(n) is the n-th non-square.

QED

Comments

Popular posts from this blog

p - p^2-2 / p+2

J595 Mathematical Reflection

J595 Mathematical Reflection  \(\sqrt[3]{(x-1)^2}  - \sqrt[3]{2(x-5)^2} + \sqrt[3]{(x-7)^2} = \sqrt[3]{4x} \) By Titu Adreescu. My Solution (potentially wrong): Let \(A = \sqrt[3]{(x-1)^2}\) , \(B = \sqrt[3]{2(x-5)^2}\), \(C = \sqrt[3]{(x-7)^2} \), \(D = \sqrt[3]{4x}\). Hence we have \(A + C = B + D\). Notice that \(A^3 + C^3 = B^3 + D^3 \). Also notice that \( (A+C)^3 = (B+D)^3\) yields \( AC = BD \). Also by factoring out \(A^3 + C^3 = (A+C)(A^2-AC-C^2)\) and doing the same for \(B^3+D^3\) gives us \(A^2 + C^2 = B^2 + D^2\). Lemma 1 : \((A^3 - C^3)^2 = (B^3 - D^3)^2\). Proof: Note that \((A^3+C^3)^2 - (A^3-C^3)^2 = 4A^3C^3 = 4B^3D^3 = (B^3+D^3)^2 - (B^3-D^3)^2\) and the conclusion follows. \( \square \) Using Lemma 1 we get \( ( (x-1)^2 - (x-7)^2)^2 = (2(x-5)^2 - 4x)^2\) and solving for x gives us \( x = (9 \pm 4\sqrt{2}) , (3 \pm 2\sqrt{2}) \). \(\square\)

232 | 20^n + 16^n - 3^n - 1

Problem: If \(n\) is even, then \( 323 | 20^n + 16^n - 3^n - 1 \). Solution: Let \( n = 2k \). We have \( 17 | 400^k - 9^k \) and \( 17 | 256^k - 1 \). Hence \( 17 | 20^n + 16^n - 3^n - 1 \). Also \( 19 | 20^n -1 \) and \( 19 | 256^k - 9^k \). Hence  \(19 | 20^n + 16^n - 3^n - 1 \). Hence it is divisible by \( 17 \times 19 = 323 \). QED