Problem:
If \(n\) is even, then \( 323 | 20^n + 16^n - 3^n - 1 \).
Solution:
Let \( n = 2k \).
We have \( 17 | 400^k - 9^k \) and \( 17 | 256^k - 1 \). Hence \( 17 | 20^n + 16^n - 3^n - 1 \).
Also \( 19 | 20^n -1 \) and \( 19 | 256^k - 9^k \). Hence \(19 | 20^n + 16^n - 3^n - 1 \).
Hence it is divisible by \( 17 \times 19 = 323 \). QED
Comments
Post a Comment