Skip to main content

9 | a^2 + b^2 + c^2

Problem:
Prove that if \( 9 | a^2 + b^2 + c^2 \) then 9 divides at least one of \(a^2-b^2\), \(b^2-c^2\) or \( c^2 - a^2 \).

Solution:
Proof by contradiction. Suppose none of them is divisible by 9. Then \(a^2, b^2, c^2 \pmod 9\) are all different. A square number is \( 0, 1, -2, 4 \pmod 9 \). But \( a^2 + b^2 + c^2  \equiv 1-2+4, 0-2+4, 0+1+4, 0+1-2 \pmod 9 \not \equiv 0 \pmod 9\). QED

Comments

Popular posts from this blog

641 | 2^32 + 1

Problem: Show that \( 641 | 2^{32} + 1 \). Solution: (From Problem Solving Strategies, Arthur Engel) \( 641 = 625 + 16 = 5^4 + 2^4 \). So \( 641 | 2^{32} + 2^{28} \cdot 5^4 \). Also, \( 641 = 640 + 1 = 2^7 \cdot 5 + 1\). So \( 641 | (2^7 \cdot 5)^4 - 1 = 2^{28}\cdot 5^4 - 1 \). Hence \( 641 | 2^{32} + 2^{28} \cdot 5^4 -(2^{28}\cdot 5^4 - 1) \). QED

2n+1 3n+1 squares then 5n+3 not prime

Problem: Prove that if \( 2n+1 \) and \( 3n+1 \) are both squares, then \( 5n+3 \) is not a prime. Solution: Proof by contradiction. Suppose that there is n such that 5n+3 is prime. Note that \( 4(2n+1) - (3n+1) = 5n+3 \). Let \( 2n+1 = p^2 \) and \( 3n+1 = q^2 \), where \( p, q > 0 \). We have \( (2p-q)(2p+q) = 5n+3 \). Since RHS is a prime, we must have \(2p - q = 1 \) and \( 2p + q = 5n+3 \). Solving for \( q \) we get \( 2q = 5n + 2 \). Substituting, we get \( 2q = q^2 + 2n + 1 \), or \( -2n = (q-1)^2 \). Since RHS is \( \geq 0 \), we can only have equality when \( n= 0 \) and \( q = 1 \). In this case, we have \( 5n + 3 = 8 \) not a prime. QED.

Derive e

Prove that \( \left( 1 + \frac{1}{n} \right)^n \) converges. Solution Let \( G(n) =  \left( 1 + \frac{1}{n} \right)^n \). Binomial expansion, \( G(n) = \sum_{k = 0}^{n} \frac{ \binom{n}{k} }{n^k} \). By simple inequality argument, \( \frac{ \binom{n}{k} }{n^k} < \frac{1}{k!} \). So if we let \( F(n) = \sum_{k = 0}^{n} \frac{1}{k!} \), we have \( G(n) < F(n) \). By simple inequality argument, \( F(n) < 1 + \sum_{k = 1}^{n} \frac{1}{2^{k-1}} < 3 \). So G and F are bounded above. By AM-GM, \( \frac{G(n-1)}{G(n)} = \left( \frac{ n^2 }{ n^2 - 1} \right)^{(n-1)} \frac{ n}{n+1} < \left(  \frac{ \frac{ n^2 }{ n^2 - 1} (n-1) + \frac{ n}{n+1} }{n} \right)^n = 1 \). So \( G(n-1) < G(n) \). Since G is monotonic increasing and bounded above, G converges. Similarly F converges. Let's also prove that G and F converges to the same limit. By studying individual terms in \( F(n) - G(n) \) and making simple inequality arguments, we can show that for each \( \epsilon > 0 \) w...