Skip to main content

sum of 3 out of 5 is divisible by 3

Problem:
Among 5 integers, there are always 3 with sum divisible by 3.
(From Problem Solving Strategies, Arthur Engel)

Solution:
Proof by Pigeon Hole Principle.
An integer is either 0, 1 or 2 \( \pmod 3 \). Imagine placing 5 integers into those 3 boxes. If we have at least one in each, then we can pick one from each, with sum divisible by 3.
Otherwise, we'll have at least 3 integers in one of the boxes. Pick those 3. QED

Comments

Popular posts from this blog

641 | 2^32 + 1

Problem: Show that \( 641 | 2^{32} + 1 \). Solution: (From Problem Solving Strategies, Arthur Engel) \( 641 = 625 + 16 = 5^4 + 2^4 \). So \( 641 | 2^{32} + 2^{28} \cdot 5^4 \). Also, \( 641 = 640 + 1 = 2^7 \cdot 5 + 1\). So \( 641 | (2^7 \cdot 5)^4 - 1 = 2^{28}\cdot 5^4 - 1 \). Hence \( 641 | 2^{32} + 2^{28} \cdot 5^4 -(2^{28}\cdot 5^4 - 1) \). QED

2n+1 3n+1 squares then 5n+3 not prime

Problem: Prove that if \( 2n+1 \) and \( 3n+1 \) are both squares, then \( 5n+3 \) is not a prime. Solution: Proof by contradiction. Suppose that there is n such that 5n+3 is prime. Note that \( 4(2n+1) - (3n+1) = 5n+3 \). Let \( 2n+1 = p^2 \) and \( 3n+1 = q^2 \), where \( p, q > 0 \). We have \( (2p-q)(2p+q) = 5n+3 \). Since RHS is a prime, we must have \(2p - q = 1 \) and \( 2p + q = 5n+3 \). Solving for \( q \) we get \( 2q = 5n + 2 \). Substituting, we get \( 2q = q^2 + 2n + 1 \), or \( -2n = (q-1)^2 \). Since RHS is \( \geq 0 \), we can only have equality when \( n= 0 \) and \( q = 1 \). In this case, we have \( 5n + 3 = 8 \) not a prime. QED.

12 coins

Problem: There are 12 identical coins. There might be one that is a counterfeit, which is either heavier or lighter than the rest. Can you identify the counterfeit (if any) using a balance at most 3 times? Solution: I think this is one of the most difficult variations of the coins weighing problem. The main idea is to "mark" the coins after weighing them. Step 1. Divide the coins into groups of 4. Weigh the first two. If they have the same weight, go to step 4. Otherwise, mark the coins belonging to the heavier group 'H', lighter group 'L', and the unweighted ones 'S'. We know that the counterfeit is either in L or H. Step 2. Now we have 4 Hs, 4 Ls, and 4 Ss. We now form 3 groups: HHL, LLH, and HLS. Step 3. Weigh HHL against HLS. Case 3.1: HHL is lighter than HLS. Then either the L in HHL or the H in HLS is the counterfeit. Simply weigh one of them against S and conclude accordingly. Case 3.2: HHL is heavier than HLS. Then the counterfeit ...