Let's say we are observing an event that to us seems random. E.g. The number of cars passing through a road. Suppose we learn that on average, there are m cars passing the road within 1 hour. Goal: Can we make a model to suggest what is the probability of seeing exactly r cars passing the road in an hour? Let's represent one hour as a line, and on the line there are marks to represent the time on which a car passes. Let's suppose there are m marks, to represent the average case of seeing m cars on the road in an hour. Let's divide the 1 hour line into n uniform time segments, n large enough such that in one time segment there is at most 1 car. Out of the n time segments, m of them contains a car. Then it is reasonable to say that the probability of a time segment to contain a car is m/n. Let's analyse as n goes to infinity. We can say P(seeing exactly r cars in an hour) = P(exactly r cars contained in n segments) = \( \binom{n}{r} \left( \frac{m}{n} \right)^r \left...