Skip to main content

Derive e

Prove that \( \left( 1 + \frac{1}{n} \right)^n \) converges.

Solution

Let \( G(n) =  \left( 1 + \frac{1}{n} \right)^n \).

Binomial expansion, \( G(n) = \sum_{k = 0}^{n} \frac{ \binom{n}{k} }{n^k} \).

By simple inequality argument, \( \frac{ \binom{n}{k} }{n^k} < \frac{1}{k!} \).

So if we let \( F(n) = \sum_{k = 0}^{n} \frac{1}{k!} \), we have \( G(n) < F(n) \).

By simple inequality argument, \( F(n) < 1 + \sum_{k = 1}^{n} \frac{1}{2^{k-1}} < 3 \).

So G and F are bounded above.

By AM-GM, \( \frac{G(n-1)}{G(n)} = \left( \frac{ n^2 }{ n^2 - 1} \right)^{(n-1)} \frac{ n}{n+1} < \left(  \frac{ \frac{ n^2 }{ n^2 - 1} (n-1) + \frac{ n}{n+1} }{n} \right)^n = 1 \). So \( G(n-1) < G(n) \).

Since G is monotonic increasing and bounded above, G converges.

Similarly F converges.

Let's also prove that G and F converges to the same limit.

By studying individual terms in \( F(n) - G(n) \) and making simple inequality arguments, we can show that for each \( \epsilon > 0 \) we can pick N s.t. \( F(n) - G(n) < \epsilon \) for all n > N. This can be further used to make the formal argument that the limit of F is the same as the limit of G.

So if we call the limit e, then \( \lim_{n \to \infty } \left( 1 + \frac{1}{n} \right) ^n  = 1 + \frac{1}{1!} + \frac{1}{2!} +  \frac{1}{3!} + \cdots = e \).

Comments

Popular posts from this blog

232 | 20^n + 16^n - 3^n - 1

Problem: If \(n\) is even, then \( 323 | 20^n + 16^n - 3^n - 1 \). Solution: Let \( n = 2k \). We have \( 17 | 400^k - 9^k \) and \( 17 | 256^k - 1 \). Hence \( 17 | 20^n + 16^n - 3^n - 1 \). Also \( 19 | 20^n -1 \) and \( 19 | 256^k - 9^k \). Hence  \(19 | 20^n + 16^n - 3^n - 1 \). Hence it is divisible by \( 17 \times 19 = 323 \). QED

p - p^2-2 / p+2

J595 Mathematical Reflection

J595 Mathematical Reflection  \(\sqrt[3]{(x-1)^2}  - \sqrt[3]{2(x-5)^2} + \sqrt[3]{(x-7)^2} = \sqrt[3]{4x} \) By Titu Adreescu. My Solution (potentially wrong): Let \(A = \sqrt[3]{(x-1)^2}\) , \(B = \sqrt[3]{2(x-5)^2}\), \(C = \sqrt[3]{(x-7)^2} \), \(D = \sqrt[3]{4x}\). Hence we have \(A + C = B + D\). Notice that \(A^3 + C^3 = B^3 + D^3 \). Also notice that \( (A+C)^3 = (B+D)^3\) yields \( AC = BD \). Also by factoring out \(A^3 + C^3 = (A+C)(A^2-AC-C^2)\) and doing the same for \(B^3+D^3\) gives us \(A^2 + C^2 = B^2 + D^2\). Lemma 1 : \((A^3 - C^3)^2 = (B^3 - D^3)^2\). Proof: Note that \((A^3+C^3)^2 - (A^3-C^3)^2 = 4A^3C^3 = 4B^3D^3 = (B^3+D^3)^2 - (B^3-D^3)^2\) and the conclusion follows. \( \square \) Using Lemma 1 we get \( ( (x-1)^2 - (x-7)^2)^2 = (2(x-5)^2 - 4x)^2\) and solving for x gives us \( x = (9 \pm 4\sqrt{2}) , (3 \pm 2\sqrt{2}) \). \(\square\)