Processing math: 0%
Skip to main content

Derive e

Prove that \left( 1 + \frac{1}{n} \right)^n converges.

Solution

Let G(n) =  \left( 1 + \frac{1}{n} \right)^n .

Binomial expansion, G(n) = \sum_{k = 0}^{n} \frac{ \binom{n}{k} }{n^k} .

By simple inequality argument, \frac{ \binom{n}{k} }{n^k} < \frac{1}{k!} .

So if we let F(n) = \sum_{k = 0}^{n} \frac{1}{k!} , we have G(n) < F(n) .

By simple inequality argument, F(n) < 1 + \sum_{k = 1}^{n} \frac{1}{2^{k-1}} < 3 .

So G and F are bounded above.

By AM-GM, \frac{G(n-1)}{G(n)} = \left( \frac{ n^2 }{ n^2 - 1} \right)^{(n-1)} \frac{ n}{n+1} < \left(  \frac{ \frac{ n^2 }{ n^2 - 1} (n-1) + \frac{ n}{n+1} }{n} \right)^n = 1 . So G(n-1) < G(n) .

Since G is monotonic increasing and bounded above, G converges.

Similarly F converges.

Let's also prove that G and F converges to the same limit.

By studying individual terms in F(n) - G(n) and making simple inequality arguments, we can show that for each \epsilon > 0 we can pick N s.t. F(n) - G(n) < \epsilon for all n > N. This can be further used to make the formal argument that the limit of F is the same as the limit of G.

So if we call the limit e, then \lim_{n \to \infty } \left( 1 + \frac{1}{n} \right) ^n  = 1 + \frac{1}{1!} + \frac{1}{2!} +  \frac{1}{3!} + \cdots = e .

Comments

Popular posts from this blog

p - p^2-2 / p+2

J595 Mathematical Reflection

J595 Mathematical Reflection  \sqrt[3]{(x-1)^2}  - \sqrt[3]{2(x-5)^2} + \sqrt[3]{(x-7)^2} = \sqrt[3]{4x} By Titu Adreescu. My Solution (potentially wrong): Let A = \sqrt[3]{(x-1)^2} , B = \sqrt[3]{2(x-5)^2}, C = \sqrt[3]{(x-7)^2} , D = \sqrt[3]{4x}. Hence we have A + C = B + D. Notice that A^3 + C^3 = B^3 + D^3 . Also notice that (A+C)^3 = (B+D)^3 yields AC = BD . Also by factoring out A^3 + C^3 = (A+C)(A^2-AC-C^2) and doing the same for B^3+D^3 gives us A^2 + C^2 = B^2 + D^2. Lemma 1 : (A^3 - C^3)^2 = (B^3 - D^3)^2. Proof: Note that (A^3+C^3)^2 - (A^3-C^3)^2 = 4A^3C^3 = 4B^3D^3 = (B^3+D^3)^2 - (B^3-D^3)^2 and the conclusion follows. \square Using Lemma 1 we get ( (x-1)^2 - (x-7)^2)^2 = (2(x-5)^2 - 4x)^2 and solving for x gives us x = (9 \pm 4\sqrt{2}) , (3 \pm 2\sqrt{2}) . \square

232 | 20^n + 16^n - 3^n - 1

Problem: If n is even, then 323 | 20^n + 16^n - 3^n - 1 . Solution: Let n = 2k . We have 17 | 400^k - 9^k and 17 | 256^k - 1 . Hence 17 | 20^n + 16^n - 3^n - 1 . Also 19 | 20^n -1 and 19 | 256^k - 9^k . Hence  19 | 20^n + 16^n - 3^n - 1 . Hence it is divisible by 17 \times 19 = 323 . QED