Skip to main content

Coin toss game

Problem

You and your friend play a game involving coin-flips. Each time the coin lands head, your friend pays you $1. But each time the coin lands tail, you pay your friend $1. The game goes on until either you win $100 or you lose $50. What is the probability of you winning?

Solution


3 solutions, two of them are algebraic, one of them is argumentative.

Algebraic Solution 1

Let \( p_i \) be the probability of winning $100 given that we already accumulated \( i \) dollars (can be negative, meaning we are losing money).

Then we have \( p_i = \frac{1}{2} p_{i-1} + \frac{1}{2} p_{i+1} \), with special value \( p_{100} = 1 \) and \( p_{-50} = 0 \).

It can be shown that \( p_i = \frac{i + 50}{150} \) the only solution that satisfies the system of linear equations.

This approach can be extended to a more general problem: what is the probability of winning if we stop at either winning $n or losing $m? It should be \( \frac{m}{n+m} \).

Algebraic Solution 2

This approach is inspired by the idea of reflecting the -$50 to $50, and symmetry.

Suppose we know the probability q of going from $0 to either $50 or -$50 for the first time.

And suppose we know the probability p of going from $0 back to $0 again for the first time without touching $50 and -$50.

Then we can say that \( p + q = 1 \). (From $0, you either eventually end up crossing $50 or - $50, or you end up back to $0. Wait, are you sure? Actually it's possible that e.g. you got stuck in between 0 and 50 forever. What is the probability of that?)

So \( p_0 = p \cdot p_0 + \frac{q}{2} p_{50} \), and \( p_{50} = p \cdot p_{50} + \frac{q}{2} + \frac{q}{2} p_0 \).

Solving the above will give us \( p_0 = \frac{1}{3} \).

Argumentative solution

If you believe that there is no strategy that can earn you expected value > 0 (otherwise you should actually invest in the stock market and become really rich), then you can say that the expected value of the bet is 0. If p is probability of winning, then we have 100 * p - 50 * (1-p) = 0.

Comments

Popular posts from this blog

641 | 2^32 + 1

Problem: Show that \( 641 | 2^{32} + 1 \). Solution: (From Problem Solving Strategies, Arthur Engel) \( 641 = 625 + 16 = 5^4 + 2^4 \). So \( 641 | 2^{32} + 2^{28} \cdot 5^4 \). Also, \( 641 = 640 + 1 = 2^7 \cdot 5 + 1\). So \( 641 | (2^7 \cdot 5)^4 - 1 = 2^{28}\cdot 5^4 - 1 \). Hence \( 641 | 2^{32} + 2^{28} \cdot 5^4 -(2^{28}\cdot 5^4 - 1) \). QED

Derive Poisson Distribution

Let's say we are observing an event that to us seems random. E.g. The number of cars passing through a road. Suppose we learn that on average, there are m cars passing the road within 1 hour. Goal: Can we make a model to suggest what is the probability of seeing exactly r cars passing the road in an hour? Let's represent one hour as a line, and on the line there are marks to represent the time on which a car passes. Let's suppose there are m marks, to represent the average case of seeing m cars on the road in an hour. Let's divide the 1 hour line into n uniform time segments, n large enough such that in one time segment there is at most 1 car. Out of the n time segments, m of them contains a car. Then it is reasonable to say that the probability of a time segment to contain a car is m/n. Let's analyse as n goes to infinity. We can say P(seeing exactly r cars in an hour) =  P(exactly r cars contained in n segments) = \( \binom{n}{r} \left( \frac{m}{n} \right)^r \left...

12 coins

Problem: There are 12 identical coins. There might be one that is a counterfeit, which is either heavier or lighter than the rest. Can you identify the counterfeit (if any) using a balance at most 3 times? Solution: I think this is one of the most difficult variations of the coins weighing problem. The main idea is to "mark" the coins after weighing them. Step 1. Divide the coins into groups of 4. Weigh the first two. If they have the same weight, go to step 4. Otherwise, mark the coins belonging to the heavier group 'H', lighter group 'L', and the unweighted ones 'S'. We know that the counterfeit is either in L or H. Step 2. Now we have 4 Hs, 4 Ls, and 4 Ss. We now form 3 groups: HHL, LLH, and HLS. Step 3. Weigh HHL against HLS. Case 3.1: HHL is lighter than HLS. Then either the L in HHL or the H in HLS is the counterfeit. Simply weigh one of them against S and conclude accordingly. Case 3.2: HHL is heavier than HLS. Then the counterfeit ...