Skip to main content

Is A smaller or larger than B?

Two pieces of paper, each have an unknown number written on it. You pick one of them and get see the number. Guess if this number is smaller or larger than the other.

Instinct might say that is fifty-fifty to guess right. But actually there is a strategy to do better than 1/2.

In fact, if the numbers are chosen from Uniform(-1, 1), there is a strategy to guess right with probability 3/4. !!

Hint for general strategy: pick a random number and compare.
Hint for Uniform(-1, 1): Focus on 0 which divides the number line into 2 halves. What can you say about the chance that both numbers fall to the left or right of 0? Anything interesting?

Comments

Popular posts from this blog

641 | 2^32 + 1

Problem: Show that \( 641 | 2^{32} + 1 \). Solution: (From Problem Solving Strategies, Arthur Engel) \( 641 = 625 + 16 = 5^4 + 2^4 \). So \( 641 | 2^{32} + 2^{28} \cdot 5^4 \). Also, \( 641 = 640 + 1 = 2^7 \cdot 5 + 1\). So \( 641 | (2^7 \cdot 5)^4 - 1 = 2^{28}\cdot 5^4 - 1 \). Hence \( 641 | 2^{32} + 2^{28} \cdot 5^4 -(2^{28}\cdot 5^4 - 1) \). QED

Derive e

Prove that \( \left( 1 + \frac{1}{n} \right)^n \) converges. Solution Let \( G(n) =  \left( 1 + \frac{1}{n} \right)^n \). Binomial expansion, \( G(n) = \sum_{k = 0}^{n} \frac{ \binom{n}{k} }{n^k} \). By simple inequality argument, \( \frac{ \binom{n}{k} }{n^k} < \frac{1}{k!} \). So if we let \( F(n) = \sum_{k = 0}^{n} \frac{1}{k!} \), we have \( G(n) < F(n) \). By simple inequality argument, \( F(n) < 1 + \sum_{k = 1}^{n} \frac{1}{2^{k-1}} < 3 \). So G and F are bounded above. By AM-GM, \( \frac{G(n-1)}{G(n)} = \left( \frac{ n^2 }{ n^2 - 1} \right)^{(n-1)} \frac{ n}{n+1} < \left(  \frac{ \frac{ n^2 }{ n^2 - 1} (n-1) + \frac{ n}{n+1} }{n} \right)^n = 1 \). So \( G(n-1) < G(n) \). Since G is monotonic increasing and bounded above, G converges. Similarly F converges. Let's also prove that G and F converges to the same limit. By studying individual terms in \( F(n) - G(n) \) and making simple inequality arguments, we can show that for each \( \epsilon > 0 \) w...

Random walk by the cliff

You are one step away from falling down a cliff. In each step, you have 1/3 chance of moving towards the cliff, 2/3 chance of moving away from the cliff. What is the probability you fall down the cliff? Solution It is 1/2, and there are 3 ways to approach this. Let's say we are at position 0, and the cliff is at position -1. We go +1 with probability p, and go -1 with probability 1-p. Approach 1. Catalan number: All paths that end with falling down the cliff can be broken down to two parts: 0 -> ... -> 0 and 0 -> -1. The path 0 -> ... -> 0 is Catalan; if we fix the path length to 2n, then the number of paths would be C_n. What we want to compute is the total probability = (1-p) sum { C_n (p(1-p))^n }. We can use the generating function for Catalan to arrive at: if p <= 1/2, probability = 1; if p > 1/2, probability = 1/p - 1. Approach 2. Let P(i) be the probability of reaching -1 from position i.  P(0) = 1-p + pP(1) Also, P(1) can be derived as follows: can we r...