Skip to main content

Is A smaller or larger than B?

Two pieces of paper, each have an unknown number written on it. You pick one of them and get see the number. Guess if this number is smaller or larger than the other.

Instinct might say that is fifty-fifty to guess right. But actually there is a strategy to do better than 1/2.

In fact, if the numbers are chosen from Uniform(-1, 1), there is a strategy to guess right with probability 3/4. !!

Hint for general strategy: pick a random number and compare.
Hint for Uniform(-1, 1): Focus on 0 which divides the number line into 2 halves. What can you say about the chance that both numbers fall to the left or right of 0? Anything interesting?

Comments

Popular posts from this blog

641 | 2^32 + 1

Problem: Show that \( 641 | 2^{32} + 1 \). Solution: (From Problem Solving Strategies, Arthur Engel) \( 641 = 625 + 16 = 5^4 + 2^4 \). So \( 641 | 2^{32} + 2^{28} \cdot 5^4 \). Also, \( 641 = 640 + 1 = 2^7 \cdot 5 + 1\). So \( 641 | (2^7 \cdot 5)^4 - 1 = 2^{28}\cdot 5^4 - 1 \). Hence \( 641 | 2^{32} + 2^{28} \cdot 5^4 -(2^{28}\cdot 5^4 - 1) \). QED

sum of 3 out of 5 is divisible by 3

Problem: Among 5 integers, there are always 3 with sum divisible by 3. (From Problem Solving Strategies, Arthur Engel) Solution: Proof by Pigeon Hole Principle. An integer is either 0, 1 or 2 \( \pmod 3 \). Imagine placing 5 integers into those 3 boxes. If we have at least one in each, then we can pick one from each, with sum divisible by 3. Otherwise, we'll have at least 3 integers in one of the boxes. Pick those 3. QED

2n+1 3n+1 squares then 5n+3 not prime

Problem: Prove that if \( 2n+1 \) and \( 3n+1 \) are both squares, then \( 5n+3 \) is not a prime. Solution: Proof by contradiction. Suppose that there is n such that 5n+3 is prime. Note that \( 4(2n+1) - (3n+1) = 5n+3 \). Let \( 2n+1 = p^2 \) and \( 3n+1 = q^2 \), where \( p, q > 0 \). We have \( (2p-q)(2p+q) = 5n+3 \). Since RHS is a prime, we must have \(2p - q = 1 \) and \( 2p + q = 5n+3 \). Solving for \( q \) we get \( 2q = 5n + 2 \). Substituting, we get \( 2q = q^2 + 2n + 1 \), or \( -2n = (q-1)^2 \). Since RHS is \( \geq 0 \), we can only have equality when \( n= 0 \) and \( q = 1 \). In this case, we have \( 5n + 3 = 8 \) not a prime. QED.